MILCmk

Summary Version
1.0

Purpose of Benchmark

These are some representative microkernels for the MIMD Lattice Computation
(MILC) collaboration code. They test the compiler's ability to optimize code that
uses complex arithmetic on small vectors and matrices with sizes that are not
powers of 2. They also tend to be bandwidth limited for array sizes that are larger
than the cache and can be a good test of streaming and prefetching.

Characteristics of Benchmark

The MILC code is designed to address fundamental questions in high-energy and
nuclear physics such as the study of the mass spectrum of strongly interacting
particles, the weak interactions of these particles, and the behavior of strongly
interacting matter under extreme conditions. MILC simulates the fundamental
theory of the strong nuclear force, quantum chromodynamics (QCD), formulated on
a four-dimensional space-time lattice. The QCD gluon field is sampled using a
Hybrid Monte Carlo algorithm, which requires the solution of a large sparse system
at every step. The microkernels are some of the more heavily used routines taken
from the QCD Linear Algebra (QLA) library developed under SciDAC. The routines
perform some basic math operations among arrays of 3x3 complex matrices and
length 3, 6 or 12 complex vectors.

The test programs run benchmarks of 7 kernels for various array sizes in single and
double precision. In a real application the typical array sizes would correspond to
about 16k elements per core, though the optimal value will depend greatly on the
overall balance of the system (including network), and can still vary quite a bit
depending on the problem being run. As a representative sample, the Mflops
numbers should be reported for sizes of roughly 1k, 16k and 256k elements per
core, or a similar range that is appropriate for the proposed architecture. As a
further guide, on a current 10PF system, a full machine run would have about 12G
elements in total. Weak scaling to a 320PF system would give 384G elements for the
whole system. If that system had 64k nodes, then the typical size would be around
6M elements per node.

Mechanics of Building Benchmark

Simply edit the Makefile variables CC (C compiler), COPT (optimization flags) and
OMP (flag to enable OpenMP) and make. This will produce the two executables
gla_bench-qgla-1.7.1-f3 and gla_bench-qla-1.7.1-d3 for single and double precision,
respectively.



Mechanics of Running Benchmark

There are no command line parameters, so one can simply run each executable as a
single process on a node, setting OMP_NUM_THREADS to the appropriate value, if
necessary. For example:

OMP_NUM_THREADS=64 ./qla_bench-qla-1.7.1-f3

Verification of Results

Example outputs of a run on 1 node of a BG/Q are in
bench-qla-1.7.1-f3.output
bench-qla-1.7.1-d3.output

Within a run of the executable, it performs benchmarks for several array lengths.
The output contains results for each of the form

len = 4096

len/thread = 64

QLA_V_vpeq_M_times_pV : 430813 time= 0.28 mem=21394 mflops=10697
QLA_V_veq_Ma_times_V : 49.5022 time= 0.35 mem=16798 mflops= 9239
QLA_V_vmeqg_pV : -56361.7 time= 0.46 mem=18245 mflops= 1520
QLA_D_vpeq_spproj_M_times_pD : 644470 time= 0.43 mem=14248 mflops= 6649
QLA_M_veq_M_times_pM : 181.402 time= 0.23 mem=20257 mflops=18569
QLA_r_veq_norm2_V : 126976 time= 1.02 mem= 5861 mflops= 2930
QLA _c_veq_ V_dot_V 0 1.6123e+10 time= 1.34 mem= 4470 mflops= 2235

len is the total array length for the process
len/thread is the array length per OepnMP thread

The next 7 lines contain the summary for each of the kernels tested, of the form
<kernel name> : <checksum> time=<time> mem=<mem> mflops=<mflops>

checksum is a simple sum of the result vector, and can be used as a basic test for
correctness. It need not agree exactly, and can differ due to roundoff when
optimizing if the order of operations is changed.
time is the total time for that benchmark in seconds. Each benchmark is repeated
several times to ensure that the total time is large enough to get an accurate
measurement (usually around 1 second). If the total time is too small, then the
number 9.e9 that appears in gla_bench.c line 211:

double cf=9.e9/n;
may need to be increased to get accurate measurements.

mem is the total memory bandwidth measured (including loads and stores) in GB/s.

mflops is the total flop rate measured in Mflop/s.



